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Dynamic models in Urban Economics are still a new phenomenon. 
The difficulty in the development of such models stems from two main 
reasons. First is the technical difficulty in incorporating both time and 
space into a single model, and second is the early stages of development 
of urban economic theory at present. 

Among the early contributions to urban economic dynamics are the 
papers by Fujita [3, 41. We refer here to the recent one (1976). In this 
work he developed a methodological basis for dynamic modeling in 
urban economics. He investigated growth patterns of a city with a given 
growth rate. The author investigates the properties of demand and supply, 
bid rents and prices, and establishes their growth patterns. 

The economic interpretation of the model is somewhat weak. The 
difficulties stem from the assumption that the demand for housing in 
each zone consists of a single point in the price-commodity space at a 
given time. This assumption, probably inherited from linear programming 
spatial models, beside being difficult to explain, also yields unstability 
in the model and prevents the author from generating an equivalent com- 
pletely decentralized equilibrium model. The model investigated in 
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this paper is similar in structure to Fujita’s paper. The approach adopted 
by us to avoid discussing the demand side, contrary to Fujita, was to 
assume a completely inelastic demand curve at each point in time. 
Another simplifying assumption which make Fujita’s model poorer 
than it should be, is that each type of building consumer (population 
and offices) demands only one type of building. It would have enriched 
the Fujita’s results considerably if each population type could reside in 
several types of buildings, each with a different amount of land per 
building unit. This assumption is common in the static literature and it 
would be interesting to observe its effects through time. 

In our model, although we restrict ourselves to one population type, 
we allow a continuum of housing densities, and since we are interested in 
adjustment costs we allow- those densities to vary with time, at a cost. 
We also include in our model maintenance and depreciation costs, a very 
important factor when dealing in dynamic phenomena and which were 
not previously included in urban models. 

Thus we cannot only characterize the optimal solution but also 
investigate fully the completely decentralized competitive market and 
find out under what circumstances the competitive solution is optimal. 

In this work we investigate dynamic aspects concerned with urban 
growth. An investment process is often followed by extra costs related 
to the rate of investment. It is true for the economy as a whole (see, for 
example, [2, IS]), or in the case of a single firm [S, 6, 9, 171. In urban 
development, investment or construction activity is the main aspect of 
development activity. Urban investment is confined in space and adjust- 
ment costs are more likely to occur than in any other activity. Addi- 
tionally, investments in urban development, are long term, irreversible, 
and specific. All this implies that current investment decisions have 
a strong effect on future development. Nevertheless, no attempt has 
been made SO far to analyze the problem. The reason for this is probab1.v 
the technical difficulty involved in such a theory, which may have 
hampered past attempts to solve the problem. The reader will find that, 
although simplifying assumptions are made, our model is still complex. 
However, we get interesting results that seem to apply to more general 
models as well. 

Apart from adjustment costs, we assume that marginal construct’ion 
and maintenance costs increase with density. Those assumptions are 
common in the urban economic literature. (For example, see [l I]). 
When demolition is required for further development, demolition costs 
are the alternative to adjustment costs. A similar cost component is dis- 
cussed by Rothschild [15]; demolit.ion cost is discussed as well in this 
paper. 
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The optimal solution of the model is compared to the competitive 
equilibrium solution. Conditions for competitive equilibrium to be 
optimal are then derived. The main findings of the paper are: 

(1) The more rapid the rate of growth of a city, the more sprawled 
and scattered it becomes. Therefore, we expect to find that where two 
cities are of equal size, the newer city will be more sprawled and scattered. 

(2) In rehabilitation areas where massive demolition takes place, the 
optimal construction policy is to concentrate all construction activity 
in one zone at a t,ime. 

(3) Under rational expectations and where adjustment costs are 
dominant, market equilibrium yields t’he optimum. In zones where 
demolition costs dominate, a free market leads to a monopolistic solution 
or no solution at all, and thus government intervention is required. 

(4) Cities in competitive equilibrium with unanticipated high (low) 
rates of development tend to be dense (sprawled) with respect to their 
optimal size. 

The plan of the paper is as follows: Section l-the assumptions of the 
model are presented and interpreted. Section a-the formal model is 
presented, and the necessary and sufficient conditions for the optimal 
solution are derived and interpreted. Section 3-the optimal solution 
to the case with costs of adjustment is derived. Section 4 is devoted to 
the optimal solution of the case with demolition costs. Section j-the 
competitive equilibrium solution of the problem is derived and compared 
to the optimal solution. Conclusions and evaluation of the results follow 
in Section 6. 

I. THE MODEL ASSUMPTIONS 

Following traditional literature [ll, 121, we assume a concentric city 
with residential areas centered around the CBD and surrounded by the 
agricultural ring. We limit attention to the residential ring assuming the 
CBD is given. Divide the area around the CBD into concentric rings 
i(i = 1, 2, . . .), each with an equal area S. Without loss of generality, 
assume S = 1. Zone i is represented by a single parameter Ti(t) which 
represents commuting costs to the CBD per household per unit of time 
at time t. We further assume that Ti(t) does not vary with time, i.e., 
Ti(t) = T,. This is a strong assumption since in recent literature trans- 
portation costs are assumed to depend on congestion which in turn 
depends on the distribution of the population [7, 10, IS]. However, we 
will show that our main results are valid in the general case as well. 
It is also assumed that Ti --+ m as i --+ cc. Let Hi(t) be the number of 
households located in ring i at period t. Since S = 1, Hi(t) is also popula- 
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tion density in zone i. The number of households located within the city 
at period t is predetermined and equal to n(t). We assume n(m) < 00 
and dn(t)/dt > 0. Hence: 

5 hi(t) 2 4t1, (1) 
i=l 

where 
hi(t) = A&) (2) 

and a dot denotes derivation with respect to time. We omit the index t 
when possible. 

It is assumed that the quantity of housing supplied to each household 
is constant. Without loss of generality, assume this quantity is unitary.2 
Since attention is focused on production aspects of the problem, this 
assumption is convenient and not too restrictive. For similar and 
stronger assumptions under similar circumstances [see, 10, 111. 

The cost of producing hi(t)& units of new housing and maintaining 
Hi(t), the existing stock, is g[Hi(t), hi(t)]&. g[Hi(t), O]dt > 0 is the cost 
of maintenance of existing stock Hi and g[O, hi(t)]& > 0 is the cost of 
building hi(t)& new units of housing when there is no existing stock. 
We assume the following properties for the function g(H, h) : 

g(0, 0) = 0. (4.1) 

ag(H, h)/dh = gh > 0 is the marginal cost of a new constructed 
unit of housing given a stock H. (4.2) 

ag(H, h)/dH = gH > 0 is the marginal cost of maintaining a unit 
of stock, while new construction is 
taking place at the rate of h. (4.3) 

Pg(H, h)/dhdH = gwr(H, h) > 0. (4.4) 

This assumption means that the marginal cost of new construction in- 
creases with the existing stock. That it costs more to add a unit to high 
density than to low density areas, which takes account of the fact that 
a unit in a high rise building costs more, in terms of production factors 
other than land, than a unit in low buildings. The disturbance factor in 
terms of pollution, noise and congestion to the existing population also 
contributes to this factor. 

d2g(H, h)/aH2 = giw(H, h) > 0 (4.5) 

2 Housing units can differ, in different locations, in size, height of building, land- 
capital ratio, etc. However, they all have to supply the same services-i.e., consumers 
are indifferent between them. 
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is the same as the former assumption, but with regard to maintenance 
costs. 

Notice that even if there are economies of scale in construction, or 
maintenance, they exist when all the production factors, including land, 
are taken into account. In this case, however, land is held constant and 
only other factors (labor and capital) are permitted to change (for details 
see [ll]). Hence, it is logical to assume that’ no economies of scale exist 
in the reduced cost function. 

d’g(H, h)/dh” = gh,, # 0. 

There are two possible situations. 

(4.6) 

ghh > 0 (4.6a) 

is the case of cost of adjustment. In this case, the greater the rate of 
construction in a given zone, the higher are the costs per additional unit. 
This is explained by the fact that the quantity of land in a zone is fixed. 
Hence, higher rate of construction means higher concentration of labor 
and machinery in the same site-size in order to hasten construction. This 
concentration causes bottlenecks and inefficiencies and is expensive. 
All this is true for fixed factor prices, but an increase in the construction 
rate causes factor prices to rise for a given density in the area. Consider 
labor as an example. It’s supply curve is determined by the number of 
households in the area and is, hence, an upward sloping curve for a given 
density. The demand for labor is determined by the production rate at 
each instant. Given that the production rate in all other industries re- 
mains constant, a higher rate of residential construction implies an 
upward shift in the demand curve for labor and, hence, an increase in 
current equilibrium labor prices. This is the classical justification of costs 
of adjustment ; see for example Lucas. A similar argument may also apply 
to other construction factors like machinery, raw materials, etc. This 
effect will increase when the area becomes more populated. Another cause 
is the disturbance factor; it is assumed that the higher the rate of con- 

struction, the higher is the disturbance cost per unit of new housing. 
For small enough H, gh is nearly constant with h, but when H in- 

creases and vacant land becomes scarce, then gh increases with h. As 
long as we do not have to tear down houses in an area in order to con- 
struct new buildings, costs of adjustment are dominant. When we cannot 
build up a zone without demolishing existing buildings, a new factor is 
introduced: the cost of demolition which consists mainly of the loss of 
services of existing units. In this work, demolition in an area is possible 
only if the area will be rebuilt more densely. Demolition cost has to be 
assigned to the additional units added to the area. If the zone is rebuilt 
quickly, we can build more new dwelling units on the site evacuated by 
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demolition than if the zone is rebuilt s10wly.~ Hence, in demolition costs 
the marginal construction costs reduce as the rat’e of construction in- 
creases. We still have the effect of adjustment costs so that even where 
demolition takes place, ghh might be positive. It is reasonable to assume, 
therefore, that 

ghh < 0 (4.6b) 

in regions where most or all of the area has to be demolished and rebuilt 
and in zones where the cost of adjustment factor is reduced. Rehabilita- 
tion areas fit this description. We can, therefore, conclude that in most 
places adjustment costs are dominant except maybe in densely populated 
areas near the CBD, destined for rehabilitation. 

II. THE OPTIMIZATION MODEL 

Following Mills and de Ferraati, let the optimal construction schedule 
be the one that minimizes the discounted total residential cost,s for the 
given population schedule. The problem is, therefore, to minimize the 
total cost function, 

/ 

00 

C= e-‘“I ,j$ CHiTi + g(Hi, k)lI& (5) 
0 

subject to (l), (2), and (6) 

hi 2 0 i = 1, 2, . . . . (6) 

Necessary and sufficient conditions are given by equations (7) to (lo), 
(7) and (8) being the necessary conditions, 

X - qi - gh(Hi, hi) 5 0, [qi + Qh(Hi, hi) - k]hi = 0, (7) 

Qi = rqi - Ti - gH(Hi, hi). (8) 

The transversality condition is given by (9) 

limi C e-“qi(t)H;(t) = 0. 
i-m 

(9) 

The second order conditions are given by (10) 

(&YHghh - qhH)/ghh > 0 for ghh # 0, gHH > 0 for ghh = 0. (lo) 

8 Higher buildings require less land per dwelling unit than lower buildings. If we have 
to build a greater number of dwelling units in a built area, we can construct higher 
buildings and hence use less land per unit and thus save in demolition costs per unit. 
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For ghh < 0, (10) is always fulfilled; for ghh > 0 it is fulfilled once g(N, h) 
is convex, which is assumed henceforth. The new variables are 

q,-abbreviated form for q;(t), the reciprocal of the auxiliary function 
of Hi(t) ; 

X-abbreviated form of x(t), the Lagrange multiplier of equations (6) ; 
equations (7) to (9) imply (11) 

cc 
ii - g,, - T/r - ert e-‘t’gH(t’)dt’ 5 0 

/ 

01 

x - gh - T/r - ert e-rt’gH(t’)dt’ h = 0. 
t 1 (11) 

The economic interpretation of (11) is as follows : 

x = marginal cost of the additional households for the city as a whole. 
gh = direct marginal cost of the housing stock in a given subarea i. 

Ti/r = current value of the transportation costs from t to infinity in the 
given subarea. 

J 

cc 
eri e-r”gH(t’)dt’ = the discounted cost to time t of the marginal unit of 

1 the housing stock at time t. (Reflecting the increase 
in costs of maintenance of future housing as a 
function of an increase in the existing housing stock 
by one unit) 

Hence, (11) implies that nowhere is the total cost of accommodating 
a household smaller than the marginal cost in the city. The housing stock 
remains constant when its marginal costs exceed the marginal cost of 
accommodating a household in the city as a whole. 

III. THE SOLUTION FOR gh,, > 0 

Assume, as a working assumption to be dropped later, that x(t) = X0 is 
constant and given, and solve for the other variables including n(t). 
Each subarea can now be dealt with independently of the others. Let us 
first describe the optimal trajectory of a given zone, in the qH plane. 
From (7) and (8) we get 

aq 
= -ghH < 0, (12) 

aq ghhgHH - ghH2 
- = 

aH i=. 
> 0, (13) 

ghH + rghh 
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FIGURE 1 

a@ - 
= r + gHh/ghh > 0, (14) 

aq d&O 

al-i 

iii dq=O 

= -ghH/ghh < 0. (15) 

From (7) and (8) using (12) through (15) we can draw the phase diagram 
described in Fig. 1. 

As long as Point B is below Point A in Fig. 1, a steady state, which is 
the intersection of AA’ and BB’ must exist and with it an optimal path 
leading to it. The condition that A is above B is 

i > gh(O, 0) + gH(o, 0)/r + T/r. 

If the above inequality is not fulfilled, inequality holds in (7), and hence 
no development will take place in the zone. 

Define the city boundary as zone i = L which is the first zone not’ 
being built. i = L will be the border of the city if (16) is fulfilled. 

TL(~) = TL[X(~)I = rX - rqh(o, 0) - gH(o, 0). W4 

We see from (16) that for constant X, TL is constant and does not vary 
with time. 

We now compare the optimal path of two zones, il and iz, where 
il < iz and hence Ti, < Ti,. The line AA’ in Fig. 2 is the same for il and 
iz. The line B,B’, for iz intersects AA’ at SB and the line BIB’1 for il 

4 A more accurate description is 

TL = min(Ti > TX - rgh(O,O) - gH(O, 0)). 

We will use (16), however which aaumea !I”; is continuous, to simplify the analysis. 
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H 
H2 “I 

FIGURE 2 

intersects AA’ at ~1. From Fig. 2 it follows that HI > Hz. Therefore, the 
whole optimal path of zone iz is to the left and above t,he o.p. of zone il. 
It can be easily shown that two optimal paths of two different zones 
never intersect. 

We can now sum up the results for a constant X in the following 
propositions : 

(a) The distance of the boundary of the city is finite and constant. 
(b) Every subarea which is built up at the steady state is continuously 

developed from the start of the development process. 
(c) The closer the subarea is to the center, the higher are the rate and 

level of development, i.e., the higher are h and H. This follows from the 
comparison between two different zones made above and the assertion 
that any two optimal paths cannot intersect. This implies that the lower 
the optimal path in Fig. 2 the higher the rate of development for a given 
H, including H = 0. Hence from the beginning, the subarea with lower 
optimal path (Fig. 2) must be more developed than the one with the 
higher optimal path. 

(d) Constant k(t) implies upper bounds to the size of the population. 
This follows from the fact that the number of developed subareas is 
finite, and a steady state exists in each subarea developed. 

We can now drop the assumption of constant X(t) and see what happens 
when we let h change. We begin this analysis by examining the effects 
of a change in X on the optimal path in a given zone. By differentiating 
(7), we get 

taq/ax> lIj=dH=O = 1, 07) 
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FIGURE 3 

and from (7) and (8) we get 

(dq/dX) ( ;=m=r, = --QHF. > 0 
ghhr + gHh 

and <l. 08) 

Since (dq/dX) 1 ,+H=~ is greater than zero and less than 1, we have 
0 < (dq/dX) ( h=dH=O < (dq/dX) (ff=dH=C, = 1. 

It follows that both AA’ and BB’ move upwards when X increases, 
but AA’ moves more than BB’, so the two lines move away from each 
other. This is reflected in Fig. 3. 

It is clear from Fig. 3 that if X2 > hl, 8(X,) > S(Xi) and for a given 
H on the o.p. Q&) > 4(X1) which implies h(&) > h(hl). Hence, we can 
conclude : 

(e) An increase in x causes, in a given zone, an increase in the growth 
rate h at a given level of housing, H, and vice versa if X decreases. 

(f) An increase (decrease) in x causes the steady state level H(a) of 
a given zone to increase (decrease). 

(g) From (16) we see that an increase (decrease) in X causes the 
boundary of the city to move away from (nearer to) the CBD. 

By the boundary of a city at a given time we mean the first zone where 
development does not take place at the given time. This zone, as well as 
those beyond it, can be populated ; but they are not being developed at 
the time in question. In other words, the boundary of a city is the nearest 
zone to the center at time t which fulfills h(t) = 0. 
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We define the city limit as the nearest zone to the CBD ever to be 
settled and denote it by 1 = LS. 

Proposition (h) follows now from the discussion above. 

(h) Ifh(t) <oo forOIt< a, 

then the city limit is finite-i.e. LS < ~0, 

Hi(t) < co for0 It 5 CQ andforalli < LS 

and 
n(t) < 00 forO<t< c-0. 

In Fig. 4 the three main types of growth are described. The subareas 
are described continuously according to their distance X from the center. 
H, in this case, denotes the density. In Fig. 4a the case of constant X is 

i(SJ=L(i] 

H 

(b) 

FIQURE 4 
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described, in Fig. 4b the case of X > 0, and in Fig. 4c the case of X < 0. 
Note that at a given time t, the population dispersion described is the 
familiar one, known from the static analysis models. Note too that a 
given initial condition Hi(O) and given converging schedule x(t) corre- 
sponds to one and only one converging schedule, n(t), and vice versa. 
Hence the above discussion is a description of the solutions of equation,s 
(‘7) to (10) for different converging schedules of n(t) for the case where 
ghh > 0 for all zones. 

However, the growth pattern is more likely to be a combination of 
two or even all three growth patterns described above. At some time, 
the city boundary expands quickly (i.e., ri, X >> 0) and at’ other times the 
city boundary expands little or not at all (i.e., X 2 0). i might even 
become negative and the boundary of const,ruction activity would retreat. 
Then the boundaries might advance again rapidly and so on. The more 
rapid the development rate, i.e., the larger ti and hence X, the more 
sprawling and scatteration will happen in the city. If we compare two 
optimal cities of the same size, one of them young and growing rapidly, 
the other growing slowly, and hence being older than the first, we will 
find that the younger city is more scatt’ered than the second. We con- 
clude as follows: 

Conclusion 1. The quicker an optimal city grows, the more sprawled 
it will be. Therefore among cities of equal size the younder city will tend 
to be more sprawled. 

IV. THE SOLUTION FOR THE CASE ghh < 0 

In Section I we concluded that this case can hold only in densely 
populated rehabilitation zones. Such conditions can exist in a few zones 
near the CBD, never in the whole town. In this section, however, we 
assume as a working condition only that ghh < 0 for all levels of h and H. 
We prove the following lemma: 

Lemma. Given a cost function g(H, h) satisfying 4.1 to 4.5 and ghh < 0, 
the solution [Hi(t), hi(t), qi(t), n(t)] to the optimization problem of 
minimizing (5) subject to (l), (a), and (6), will: 

(a) Satisfy equations (7) to (10). 
(b) For every t, there exists an integer k satisfying hk = ri and hi = 0 

for i # k. Proof: Equations (7) to (10) are the necessary and sufficient 
conditions to be met. To prove b, assume there exists 0 < t < m and at 
least two indices, il and iZ, which simultaneously fulfill h;,(t) > 0 and 
hi, > 0 and prove a contradiction which implies the lemma. Without 
loss of generality assume il = 1 and iz = 2, and q1 5 q2, and let 
hi = hi0 > 0 be the alleged optimal solution. 
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Consider an alternative solution to the problem, i.e., hl* = h10 + h# 
and hz* = 0. The rest of the variables remain the same. According to a 
theorem in control theory, (see, for example [l, Ch. 21, or any standard 
control theory text) the Hamiltonian is optimized by the optimal con- 
trols hi given the optimal auxiliary and state variables, qi and Hi. Define 
by M(hl, h2) those parts of the Hamiltonian which include hl and hz, then 

-MO = @lo + qzhz” + g(H1, hl0) + g(Hz, ho), 

--AT* = ql(hlO + ho) + g(fJ1, h1° + ho) + g(Hz”, 0). 

(19) 

Hence, if we prove ill * - iVia > 0 we proved a contradiction. 
Expand g(H1, hl + h2) to a Taylor series around hl, and expand 

g (H,, 0) to a Taylor series around hp. Then : 

g(Hl, hl + h2) = g(Hl, hd + bh(H1, hd + R(hz, h,l, HI), (20) 

g(Hz, 0) = g(Hz, hd + (-hdgh(H2, h2) + R(-h,, h2, H,), 

ghh < 0 implies R(h2, hl, H1) < 0 and R( - h2, hz, H,) < 0. Use (19) to 
calculate ill* - MO, then substitute (20) into the RHS of the result, 
since hl0 and hz” are optimal and different from zero by assumption, 
equality holds in (7) for both zones which implies q1 + gh(H1, hl) = q2 
+ gh(fi2, h,). We then get 

Af* - Ad = -[R(hzO, hlO, 171) + R(- hz, 112, Ht)] > 0, (21) 

proving the contradiction and the lemma. 
The above lemma implies that at any time it is worthwhile to accumu- 

late all the available resources into one zone, and thus take advantage 
of scale economies. However, since this causes the density in the zone 
to increase in time and since gAH > 0 this implies an increase in marginal 
construction costs in this zone. Hence, construction activity will move 
to the next zone. Eventually, all zones will be built ; and since n ( m) < m 
a stationary state must exist in each zone.5 All this is summarized in 
conclusion 2. 

Conclusion 6. In rehabilitation areas where massive demolition takes 
place, the optimal construction policy is to concentrate all construction 
activity in one zone at a time. 

6 At this stage the question of existence of a stable optimal path may arise. To show 
stability note that for every i, Hi(t) is a function from +I?’ into V, and V is a compact 
subset of +Rr. Where: V = (z: 0 <z<n ( m j ). Hi(t) is a continuous non-decreasing 
function and therefore has a single limit point, H;(m), in V. We thus have proved that 
for everyithereexists Hi(m), 0 5 Hi(m) < n(m), so that limf,,Hi(t) = Hi(m) and 
Hi(m) is unique. Q.E.D. 
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In order to characterize further the optimal trajectory in this case, 
more specific assumptions about the cost function are needed. We, how- 
ever, will not pursue the subject further. 

V. THE COMPETITIVE MARKET EQUILIBRIUhl 

We assumed that t,here is a homogeneous product called a housing 
unit, and that an individual purchases the same product everywhere. 
With a housing unit, the individual has to purchase the whole resi- 
dential bundle, i.e., commuting and housing maintenance. Since he can 
purchase the same bundle everywhere, an individual is indifferent 
between locations; and hence locates where the price is the lowest. 
Hence, the demand price for the residential bundle is equal everywhere 
at each t. Designate this demand price of the bundle by x(t). At each 
location the supply price of the residential bundle consists of three 
components; and since x(t) is the lowest price in the city, (22) must hold 
for each zone: 

X(2) 5 p,‘“(t) + p?(t) + pfP(t) i = 1, 2, 3, . . . (22) 

and equality holds in a zone when construction activity takes place. 

phi(t)-the price a houseowner pays to the housing producer for a 
unit of housing at time t in zone i. 

pTi(t)-total discounted commuting costs an individual expects to pay 
while living in zone i from time t to infinity. 

pHi(t)-total discounted expected maintenance costs of a housing 
unit in zone i, beginning at period t. 

Assume two states of expectations; the first is a state of perfect fore- 
sight, i.e., the expectations exactly match the future. In this case, the 
discounted commuting costs from period t on are 

p#(t) = Ti/r. (23) 

Current maintenance costs paid by a homeowner in zone i in period t 
are determined in the market as described in Fig. 5. The demand curve 
for maintenance at time t in zone i is totally inelastic at a fixed level of 
housing stock Hi(t). The supply curve, for a given rate of construction 
hi(t) is gH[x, hi(t)]. Hence, equilibrium cost is gH[H;(t), hi(f)]. The total 
discounted maintenance costs for a housing unit in zone i from time t on 
is therefore 

/ 

m 

pHi(t) = ert e+‘g&H;(t’), h;(t’)]dt’. 
t 

(24) 
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/ * gH tX.h(t)) 

-H 

FIGURE 5 

Therefore, in the new housing market at each zone the fixed demand 
price is : 

phi(t) = x(t) - p&t) - p&t) = x(t) - Ti/r o. 

-e” 
/ 

fF’g* (Hi, hi)&‘. 
t 

The supply curve at time t in zone i is the marginal cost curve 
shCHi(O, Xl. Wh en gh), > 0 the supply curve rises from left to right. 
It is shown in Fig. 6 how the equilibrium is derived. 

1. s;, 
/ 

/ 
/’ gH(Hi,Xl= P’(Xl 

,’ / 

FIGURE 6 
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In zones where gh(hi, X) is completely above phi(X) (see S in Fig. 6), 
the zone is not built at period 1 and inequality holds in (22). The full 
equilibrium equation is, hence, given by (25). 

J 

co 
i(t) - Ti/r - ert ePt’gH(Hi, h&t - gh(H1, h) 5 0. (25) 

1 

and equality holds when hi # 0, but (25) is exactly (11). Hence, con- 
clusion 3 follows : 

Conclusion S. Under the assumption of the model with costs of adjust- 
ment (ghh > 0) and a state of perfect foresight, market equilibrium 
yields the optimal solution. 

If ghh ( 0, the supply curve in Fig. 6 declines from left to right, 
hence no stable equilibrium is possible. A possible market solution in 
this case is a monopolistic solution which might yield the optimal solution. 

Now suppose perfect knowledge does not prevail and consumers 
expect housing maintenance costs to be the same in the future as when 
the house was purchased, i.e., gH[Hi(t), hi(t)]. Then the total dis- 
counted maintenance costs expected by the consumer are 

/ 

m 

Ptli(t) = gff[Hi(t), hi(t)]/r < ert e-‘“‘gH[Hi(t), h(t)]&‘. 
t 

Hence, in this case the demand price for new housing in zone i at time t 
for a given price X(t) is higher than the demand price in the case of perfect 
knowledge. This means that for a given population schedule, the city 
boundary at a given time t is nearer the CBD and each zone is more 
densely populated than in the optimal case. The opposite is true when 
expectations are above actual costs. 

In recent literature [7, 8, 13, 141, nonoptimality in competitive 
equilibrium was caused mainly by externalities. Here two more reasons 
are added: the first is the lack of perfect foresight by people. People 
living in a city have in mind some rate of development. If the actual 
rate is greater than what people expect, the city tends to be more com- 
pact than the optimal city, and vice versa if expectations are above the 
actual rate of growth. 

In the second case, scale economies in zones where massive demolition 
is required for further development make competitive market solutions 
impossible. Conclusion 4 sums up the argument : 

Conclusion 4. Cities in competitive equilibrium with very “high” or 
very “low” rates of development tend to be more dense or more spread 
out respectively than their respective optimal size. 
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VI. CONCLUSION AND EVALUATION 

To sum up the results let us describe the general picture of a city, 
as derived from the model. In its early stages, the whole city consists of 
zones with an abundance of land and other resources. At this stage no 
costs of adjustment exist and the city grows according to the static way, 
i.e. the boundary of the city and the density of the population in each 
zone grows constantly as population increases.6 

Soon, as zones begin to fill up, costs of adjustment appear. At this 
stage the growth of the city might acquire a wave-like pattern, i.e. the 
boundary of construction activity moves at varying rates. 

We therefore, expect that cities with a relatively high rate of growth 
will be more sprawled than cities of the same size but which were built 
over longer periods of time. The scatteration of LGS Angeles compared 
to older cities can be explained as due to a rapid rate of growth over same 
period. At a certain stage of the city development, it might reach the 
point where, in some zones, demolition and reconstruction are needed. 
It is optimal then to concentrate resources for developing these rehabilita- 
tion zones in one zone at a time and perform development in jumps. In 
such zones no competitive market solution is possible and some other 
market solution, if any, is needed. Usually government intervention 
is required in such zones. Sometimes nothing is done and those zones are 
allowed to deteriorate. 

In the optimal case, construction activity takes place either in one 
of the zones with economies of scale or in all the zones with decreasing 
returns. While this is not necessarily true for the free market situation 
it is nevertheless often the case, since the quantity of housing produced 
in renewal zones exhausts the total demand for a while. Since the housing 
constructor in this zone can, if he does produce, out’bid his competitors 
in the other zones. 

Return to our basic assumptions and see how they affe d t the solution. 
About transportation we assume constant, commuting costs over time 
and hence we do not account for congestion. Introducing congestion into 
this model would certainly give more results but will not necessarily 
change the trends discussed above. Actually, the whole transportation 
activity is exogenous to this model since the only endogenous land use 
possible in the model is housing. This means that the results of the model 
apply to the strictly residential areas and that the densities involved 
here are net densities only. By making the transportation sector endo- 
genous, we will get additional results concerning the transportation 

6 This growth pattern is described by the case QI,~ = 0. For further details contact the 
authors. 
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sector and the inter-relations between the two sectors, but the main 
results achieved here are still valid. 

A similar argument applies to the assumption of fixed quantity of 
housing demand. By introducing a sloped demand function, changing 
with the real income (net from transportation costs) from zone to zone 
we are bound to get additional results but. the trends identified here 
should still be valid. 
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